Dilation-commuting operators on power-weighted Orlicz classes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Composition Operators on Orlicz Spaces

In this paper we study weighted composition operators on Orlicz spaces. Introduction : Let X and Y be two non empty sets and let F(X) and F(Y) be denoted the topological vector spaces of complex valued functions on X and Y respectively. If T : Y → X is a mapping such that f oT ∈ F (Y) whenever f ∈ F (X), then we can define a composition transformation C T : F (X) → F (Y) by C T f = f oT for eve...

متن کامل

Compact composition operators on Hardy-Orlicz and weighted Bergman-Orlicz spaces on the ball

Using recent characterizations of the compactness of composition operators on HardyOrlicz and Bergman-Orlicz spaces on the ball ([2, 3]), we first show that a composition operator which is compact on every Hardy-Orlicz (or Bergman-Orlicz) space has to be compact on H∞. Then, although it is well-known that a map whose range is contained in some nice Korányi approach region induces a compact comp...

متن کامل

Separating partial normality classes with weighted composition operators

In this article, we discuss measure theoretic characterizations for weighted composition operators in some operator classes on $L^{2}(Sigma)$ such as, $n$-power normal, $n$-power quasi-normal, $k$-quasi-paranormal and quasi-class$A$. Then we show that weighted composition operators can separate these classes.

متن کامل

Spectrum of Convolution Dilation Operators on Weighted L Spaces

R c(x)dx = 1. For any sufficiently large number K the space Lp([−K,K]) of all Lp-functions with support in the interval [−K,K] is an invariant space of Wc,α. It is known that Wc,α restricted to Lp([−K,K]) is a compact operator with eigenvalues α−k, k = 0, 1, . . . , and spectrum {α−k : k = 1, 2, . . .} ∪ {0}, which are independent of c and K. This result is better understood in the context of w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Inequalities & Applications

سال: 2019

ISSN: 1331-4343

DOI: 10.7153/mia-2019-22-33